Kevin's blog Kevin's blog
首页
  • Java基础
  • Java高级
  • MySQL
  • JDBC
  • Java 8新特性
  • 原生Servlet
  • 延迟队列
  • 分布式事务
  • ActiveMQ
  • Elasticsearch
  • Stream API
  • Redis 实战(黑马程序员)
  • Redis 课程(尚硅谷)
  • Redis数据类型和常用命令
  • 版本控制
  • Spring Framework
  • Spring MVC Framework
  • MyBatis Framework
  • MyBatis Plus Framework
  • Spring Boot Framework
  • 韩顺平 Spring Boot Framework
  • 在线教育
  • 谷粒商城 - 分布式基础 高级 集群
  • 谷粒商城 - 详细开发文档
  • docker基础
  • docker-compose容器编排
  • docker swarm集群管理
  • Vue2基础
  • 前端文章

    • JavaScript
  • 学习笔记

    • 《JavaScript教程》
    • 《JavaScript高级程序设计》
    • 《ES6 教程》
    • 《Vue》
    • 《React》
    • 《TypeScript 从零实现 axios》
    • 《Git》
    • TypeScript
    • JS设计模式总结
  • HTML
  • CSS
  • 技术文档
  • GitHub技巧
  • Nodejs
  • 博客搭建
  • 学习
  • 面试
  • 心情杂货
  • 实用技巧
  • 友情链接
关于
收藏
  • 分类
  • 标签
  • 归档
GitHub (opens new window)

Kevin

Java系统笔记
首页
  • Java基础
  • Java高级
  • MySQL
  • JDBC
  • Java 8新特性
  • 原生Servlet
  • 延迟队列
  • 分布式事务
  • ActiveMQ
  • Elasticsearch
  • Stream API
  • Redis 实战(黑马程序员)
  • Redis 课程(尚硅谷)
  • Redis数据类型和常用命令
  • 版本控制
  • Spring Framework
  • Spring MVC Framework
  • MyBatis Framework
  • MyBatis Plus Framework
  • Spring Boot Framework
  • 韩顺平 Spring Boot Framework
  • 在线教育
  • 谷粒商城 - 分布式基础 高级 集群
  • 谷粒商城 - 详细开发文档
  • docker基础
  • docker-compose容器编排
  • docker swarm集群管理
  • Vue2基础
  • 前端文章

    • JavaScript
  • 学习笔记

    • 《JavaScript教程》
    • 《JavaScript高级程序设计》
    • 《ES6 教程》
    • 《Vue》
    • 《React》
    • 《TypeScript 从零实现 axios》
    • 《Git》
    • TypeScript
    • JS设计模式总结
  • HTML
  • CSS
  • 技术文档
  • GitHub技巧
  • Nodejs
  • 博客搭建
  • 学习
  • 面试
  • 心情杂货
  • 实用技巧
  • 友情链接
关于
收藏
  • 分类
  • 标签
  • 归档
GitHub (opens new window)
  • Java基础

  • Java高级

    • 多线程
      • 序
        • 01. 程序(programm)
        • 02. 进程(process)
        • 03. 线程(thread)
        • 04. 单核CPU与多核CPU的理解
        • 05. 并行与并发的理解
      • 创建多线程
        • 方式一:继承Thread类的方式:
        • 方式二:实现Runnable接口的方式:
        • 两种方式的对比:
        • 方式三(JDK5新增)实现Callable接口
        • 方式四:使用线程池
      • Thread类中常用的方法
        • Thread类中的常用的方法:
        • 线程的优先级:
      • Thread的生命周期
      • 线程的同步机制
        • 1.背景
        • 2.Java解决方案:同步机制
        • 方式一:同步代码块
        • 方式二:同步方法
        • 方式三:Lock锁 --- JDK5.0新增
        • 3.利弊
        • 4.常见问题
        • 应用
        • 线程安全的单例模式(懒汉式)
        • 死锁问题
      • 线程通信
    • Java常用类
    • 枚举类和注解
    • Java集合
    • 泛型
    • IO流
    • 网络编程
    • Java反射机制
    • JUC
  • MySQL

  • JDBC

  • Java8新特性

  • 原生Servlet

  • 延迟队列

  • 分布式事务

  • ActiveMQ

  • Elasticsearch

  • Stream

  • 黑马程序员Redis实战

  • 版本控制

  • Java
  • Java高级
Kevin
2023-09-11
目录

多线程

# Java 多线程

# 序

# 01. 程序(programm)

概念:是为完成特定任务、用某种语言编写的一组指令的集合。即指一段静态的代码。

# 02. 进程(process)

概念:程序的一次执行过程,或是正在运行的一个程序。 说明:进程作为资源分配的单位,系统在运行时会为每个进程分配不同的内存区域

# 03. 线程(thread)

概念:进程可进一步细化为线程,是一个程序内部的一条执行路径。 说明:线程作为调度和执行的单位,每个线程拥独立的运行栈和程序计数器(pc),线程切换的开销小。 image-20250925013127189

补充: 内存结构: image-20250925013134932 进程可以细化为多个线程。 每个线程,拥有自己独立的:栈、程序计数器 多个线程,共享同一个进程中的结构:方法区、堆。

# 04. 单核CPU与多核CPU的理解

单核CPU,其实是一种假的多线程,因为在一个时间单元内,也只能执行一个线程的任务。例如:虽然有多车道,但是收费站只有一个工作人员在收费,只有收了费才能通过,那么CPU就好比收费人员。如果某个人不想交钱,那么收费人员可以把他“挂起”(晾着他,等他想通了,准备好了钱,再去收费。)但是因为CPU时间单元特别短,因此感觉不出来。 如果是多核的话,才能更好的发挥多线程的效率。(现在的服务器都是多核的) 一个Java应用程序java.exe,其实至少三个线程:main()主线程,gc()垃圾回收线程,异常处理线程。当然如果发生异常,会影响主线程。

# 05. 并行与并发的理解

并行:多个CPU同时执行多个任务。比如:多个人同时做不同的事。 并发:一个CPU(采用时间片)同时执行多个任务。比如:秒杀、多个人做同一件事

# 创建多线程

# 方式一:继承Thread类的方式:

    1. 创建一个继承于Thread类的子类
    1. 重写Thread类的run() --> 将此线程执行的操作声明在run()中
    1. 创建Thread类的子类的对象
    1. 通过此对象调用start():①启动当前线程 ② 调用当前线程的run()

说明两个问题: 问题一:我们启动一个线程,必须调用start(),不能调用run()的方式启动线程。 问题二:如果再启动一个线程,必须重新创建一个Thread子类的对象,调用此对象的start().

# 方式二:实现Runnable接口的方式:

    1. 创建一个实现了Runnable接口的类
    1. 实现类去实现Runnable中的抽象方法:run()
    1. 创建实现类的对象
    1. 将此对象作为参数传递到Thread类的构造器中,创建Thread类的对象
    1. 通过Thread类的对象调用start()

# 两种方式的对比:

  • 开发中:优先选择:实现Runnable接口的方式
  • 原因:
    1. 实现的方式没类的单继承性的局限性
    1. 实现的方式更适合来处理多个线程共享数据的情况。
  • 联系:public class Thread implements Runnable
  • 相同点:两种方式都需要重写run(),将线程要执行的逻辑声明在run()中。 目前两种方式,要想启动线程,都是调用的Thread类中的start()。

# 方式三(JDK5新增)实现Callable接口

//1.创建一个实现Callable的实现类
class NumThread implements Callable{
    //2.实现call方法,将此线程需要执行的操作声明在call()中
    @Override
    public Object call() throws Exception {
        int sum = 0;
        for (int i = 1; i <= 100; i++) {
            if(i % 2 == 0){
                System.out.println(i);
                sum += i;
            }
        }
        return sum;
    }
}

public class ThreadNew {
    public static void main(String[] args) {
        //3.创建Callable接口实现类的对象
        NumThread numThread = new NumThread();
        //4.将此Callable接口实现类的对象作为传递到FutureTask构造器中,创建FutureTask的对象
        FutureTask futureTask = new FutureTask(numThread);
        //5.将FutureTask的对象作为参数传递到Thread类的构造器中,创建Thread对象,并调用start()
        new Thread(futureTask).start();

        try {
            //6.获取Callable中call方法的返回值
            //get()返回值即为FutureTask构造器参数Callable实现类重写的call()的返回值。
            Object sum = futureTask.get();
            System.out.println("总和为:" + sum);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
    }

}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

说明:

  • 如何理解实现Callable接口的方式创建多线程比实现Runnable接口创建多线程方式强大?
    1. call()可以返回值的。
    1. call()可以抛出异常,被外面的操作捕获,获取异常的信息
    1. Callable是支持泛型的
    @Test
    void testIdWorker() throws InterruptedException {
        CountDownLatch latch = new CountDownLatch(300);
        Runnable task = () -> {
            for (int i = 0; i < 100; i++) {
                long id = redisIdWorker.nextId("order");
                System.out.println("id = " + id);
            }
            latch.countDown();

        };
        long begin = System.currentTimeMillis();
        for (int i = 0; i < 300; i++) {
            Future<?> submit = executorService.submit(task);
        }
        latch.await();
        long end = System.currentTimeMillis();
        System.out.println("time is " + (end - begin));

    }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

# 方式四:使用线程池

class NumberThread implements Runnable{
    @Override
    public void run() {
        for(int i = 0;i <= 100;i++){
            if(i % 2 == 0){
                System.out.println(Thread.currentThread().getName() + ": " + i);
            }
        }
    }
}

class NumberThread1 implements Runnable{
    @Override
    public void run() {
        for(int i = 0;i <= 100;i++){
            if(i % 2 != 0){
                System.out.println(Thread.currentThread().getName() + ": " + i);
            }
        }
    }
}

public class ThreadPool {

    public static void main(String[] args) {
        //1. 提供指定线程数量的线程池
        ExecutorService service = Executors.newFixedThreadPool(10);
        ThreadPoolExecutor service1 = (ThreadPoolExecutor) service;
        //设置线程池的属性
//        System.out.println(service.getClass());
//        service1.setCorePoolSize(15);
//        service1.setKeepAliveTime();

        //2.执行指定的线程的操作。需要提供实现Runnable接口或Callable接口实现类的对象
        service.execute(new NumberThread());//适合适用于Runnable
        service.execute(new NumberThread1());//适合适用于Runnable

//        service.submit(Callable callable);//适合使用于Callable
        //3.关闭连接池
        service.shutdown();
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

说明:

  • 好处:
  • 1.提高响应速度(减少了创建新线程的时间)
  • 2.降低资源消耗(重复利用线程池中线程,不需要每次都创建)
  • 3.便于线程管理 corePoolSize:核心池的大小 maximumPoolSize:最大线程数 keepAliveTime:线程没任务时最多保持多长时间后会终止

# Thread类中常用的方法

# Thread类中的常用的方法:

    1. start():启动当前线程;调用当前线程的run()
    1. run(): 通常需要重写Thread类中的此方法,将创建的线程要执行的操作声明在此方法中
    1. currentThread():静态方法,返回执行当前代码的线程
    1. getName():获取当前线程的名字
    1. setName():设置当前线程的名字
    1. yield():释放当前cpu的执行权
    1. join():在线程a中调用线程b的join(),此时线程a就进入阻塞状态,直到线程b完全执行完以后,线程a才结束阻塞状态。
    1. stop():已过时。当执行此方法时,强制结束当前线程。
    1. sleep(long millitime):让当前线程“睡眠”指定的millitime毫秒。在指定的millitime毫秒时间内,当前线程是阻塞状态。
    1. isAlive():判断当前线程是否存活

# 线程的优先级:

    1. MAX_PRIORITY:10 MIN _PRIORITY:1 NORM_PRIORITY:5 -->默认优先级
    1. 如何获取和设置当前线程的优先级: getPriority():获取线程的优先级 setPriority(int p):设置线程的优先级

说明:高优先级的线程要抢占低优先级线程cpu的执行权。但是只是从概率上讲,高优先级的线程高概率的情况下被执行。并不意味着只当高优先级的线程执行完以后,低优先级的线程才执行。

线程通信:wait() / notify() / notifyAll() :此三个方法定义在Object类中的。

补充:线程的分类 一种是守护线程,一种是用户线程。

# Thread的生命周期

图示: image-20250925013215621 说明: 1.生命周期关注两个概念:状态、相应的方法 2.关注:状态a-->状态b:哪些方法执行了(回调方法) 某个方法主动调用:状态a-->状态b 3.阻塞:临时状态,不可以作为最终状态 死亡:最终状态。

# 线程的同步机制

# 1.背景

例子:创建个窗口卖票,总票数为100张.使用实现Runnable接口的方式

    1. 问题:卖票过程中,出现了重票、错票 -->出现了线程的安全问题
    1. 问题出现的原因:当某个线程操作车票的过程中,尚未操作完成时,其他线程参与进来,也操作车票。
    1. 如何解决:当一个线程a在操作ticket的时候,其他线程不能参与进来。直到线程a操作完ticket时,其他线程才可以开始操作ticket。这种情况即使线程a出现了阻塞,也不能被改变。

# 2.Java解决方案:同步机制

在Java中,我们通过同步机制,来解决线程的安全问题。

# 方式一:同步代码块

synchronized(同步监视器){
   //需要被同步的代码
}
1
2
3

说明:

    1. 操作共享数据的代码,即为需要被同步的代码。 -->不能包含代码多了,也不能包含代码少了。
    1. 共享数据:多个线程共同操作的变量。比如:ticket就是共享数据。
    1. 同步监视器,俗称:锁。任何一个类的对象,都可以充当锁。 要求:多个线程必须要共用同一把锁。

补充:在实现Runnable接口创建多线程的方式中,我们可以考虑使用this充当同步监视器。 在继承Thread类创建多线程的方式中,慎用this充当同步监视器,考虑使用当前类充当同步监视器。

# 方式二:同步方法

如果操作共享数据的代码完整的声明在一个方法中,我们不妨将此方法声明同步的。

  • 关于同步方法的总结:
    1. 同步方法仍然涉及到同步监视器,只是不需要我们显式的声明。
    1. 非静态的同步方法,同步监视器是:this
    1. 静态的同步方法,同步监视器是:当前类本身

# 方式三:Lock锁 --- JDK5.0新增

面试题:synchronized 与 Lock的异同?

  • 相同:二者都可以解决线程安全问题
  • 不同:
    1. synchronized机制在执行完相应的同步代码以后,自动的释放同步监视器
    1. Lock需要手动的启动同步(lock(),同时结束同步也需要手动的实现(unlock())

使用的优先顺序:

  • Lock ---> 同步代码块(已经进入了方法体,分配了相应资源 ) --->同步方法(在方法体之外)

# 3.利弊

同步的方式,解决了线程的安全问题。---好处 操作同步代码时,只能一个线程参与,其他线程等待。相当于是一个单线程的过程,效率低。

# 4.常见问题

面试题:Java是如何解决线程安全问题的,有几种方式?并对比几种方式的不同

面试题:synchronized和Lock方式解决线程安全问题的对比

# 应用

# 线程安全的单例模式(懒汉式)

// 使用同步机制将单例模式中的懒汉式改写为线程安全的。
class Bank{
    private Bank(){}
    private static Bank instance = null;
    public static Bank getInstance(){
        //方式一:效率稍差
//        synchronized (Bank.class) {
//            if(instance == null){
//
//                instance = new Bank();
//            }
//            return instance;
//        }
        //方式二:效率更高
        if(instance == null){
            synchronized (Bank.class) {
                if(instance == null){
                    instance = new Bank();
                }
            }
        }
        return instance;
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

线程安全的单例模式(饿汉式)

//饿汉式
class Bank{
	//1.私有化类的构造器
	private Bank(){
		
	}

	//2.内部创建类的对象
	//4.要求此对象也必须声明为静态的
	private static Bank instance = new Bank();
	
	//3.提供公共的静态的方法,返回类的对象
	public static Bank getInstance(){
		return instance;
	}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

单例设计模式:

  1. 所谓类的单例设计模式,就是采取一定的方法保证在整个的软件系统中,对某个类只能存在一个对象实例。
  2. 区分饿汉式 和 懒汉式
  • 饿汉式:
    1. 坏处:对象加载时间过长。
    1. 好处:饿汉式是线程安全的
  • 懒汉式:
    1. 好处:延迟对象的创建。

# 死锁问题

1.死锁的理解: 不同的线程分别占用对方需要的同步资源不放弃,都在等待对方放弃自己需要的同步资源,就形成了线程的死锁

2.说明:

  • 1出现死锁后,不会出现异常,不会出现提示,只是所的线程都处于阻塞状态,无法继续
  • 2我们使用同步时,要避免出现死锁。
  • 3.举例:
public class ThreadTest {
    public static void main(String[] args) {
        StringBuffer s1 = new StringBuffer();
        StringBuffer s2 = new StringBuffer();
        new Thread(){
            @Override
            public void run() {
                synchronized (s1){
                    s1.append("a");
                    s2.append("1");
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    synchronized (s2){
                        s1.append("b");
                        s2.append("2");
                        System.out.println(s1);
                        System.out.println(s2);
                    }
                }

            }
        }.start();

        new Thread(new Runnable() {
            @Override
            public void run() {
                synchronized (s2){
                    s1.append("c");
                    s2.append("3");
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    synchronized (s1){
                        s1.append("d");
                        s2.append("4");
                        System.out.println(s1);
                        System.out.println(s2);
                    }
                }
            }
        }).start();
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

# 线程通信

  1. 线程通信涉及到的三个方法:
    1. wait():一旦执行此方法,当前线程就进入阻塞状态,并释放同步监视器。
    1. notify():一旦执行此方法,就会唤醒被wait的一个线程。如果有多个线程被wait,就唤醒优先级高的那个。
    1. notifyAll():一旦执行此方法,就会唤醒所有被wait的线程。

2.说明:

    1. wait(),notify(),notifyAll()三个方法必须使用在同步代码块或同步方法中。
    1. wait(),notify(),notifyAll()三个方法的调用者必须是同步代码块或同步方法中的同步监视器。否则,会出现IllegalMonitorStateException异常
    1. wait(),notify(),notifyAll()三个方法是定义在java.lang.Object类中。

3.面试题: 面试题:sleep() 和 wait()的异同?

    1. 相同点:一旦执行方法,都可以使得当前的线程进入阻塞状态。
    1. 不同点:
      1. 两个方法声明的位置不同:Thread类中声明sleep() , Object类中声明wait()
      1. 调用的要求不同:sleep()可以在任何需要的场景下调用。 wait()必须使用在同步代码块或同步方法中
      1. 关于是否释放同步监视器:如果两个方法都使用在同步代码块或同步方法中,sleep()不会释放锁,wait()会释放锁。
  1. 释放锁总结 小结释放锁的操作: image-20250925013249036

小结不会释放锁的操作: image-20250925013301018

编辑 (opens new window)
上次更新: 2024/06/15, 15:12:25
异常处理
Java常用类

← 异常处理 Java常用类→

最近更新
01
04.Spring Boot 韩顺平
10-12
02
day14
08-29
03
day09
08-29
更多文章>
Theme by Vdoing | Copyright © 2019-2025 Evan Xu | MIT License
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式